Background and rationale

- Squamous cell carcinomas (SCCs) arise from epithelial tissues and share a common etiology.
- Environmental insults generate common genetic aberrations, such as amplification of Chr 3p, which are hallmarks of early oncogenesis in SCCs.

Correlation of TP63 and NRG1 in squamous (2a) esophageal, (2b) lung, (2c) cutaneous skin, and (2d) head and neck cancer models

- Percentage of squamous and non-squamous patient samples with PIK3CA, TP63 and SOX2 copy number amplification and loss of Chr 3p, which are hallmarks of early oncogenesis in SCCs.
- Inhibition of HER3 signaling, alone or in combination with EGFR Inhibitors, may therefore have broad applicability in SCCs.
- HMBD-001, a differentiated and potentially best-in-class HER3-targeting antibody that blocks HER3 heterodimers with EGFR to potently inhibit PI3K signaling, is currently being investigated in Phase I trials (NCI10557015).

Conclusion

- Common genetic alterations that increase HER3/NGR1 and EGFR signaling are frequently observed in squamous cell carcinomas.
- SCCs are more dependent on HER3 than EGFR, therefore inhibition of HER3, alone or in combination with EGFR inhibition, could have broad applicability in squamous cell carcinomas.

- Inhibition of HER3 signaling with a potentially best-in-class anti-HER3 antibody HMBD-001 results in potent monotherapy anti-tumor activity across various squamous cancers.
- HMBD-001 combination with EGFR inhibition could further improve efficacy in EGFR amplified SCCs.
- Hummingbird Bioscience will initiate Phase Ib studies in biomarker-selected populations of SCCs in the second half of 2023.

References

Antibody therapy with HMBD-001 in combination with an EGFR inhibitor effectively inhibits tumor growth in biomarker selected preclinical models of squamous cell carcinomas

- Anti-HER3 antibody, HMBD-001, in combination with an EGFR inhibitor effectively inhibits tumor growth in biomarker selected preclinical models of squamous cell carcinomas.

Squamous models with TP63 amplification show robust monotherapy response to HMBD-001

- In vivo efficacy studies of (6a) sqNSCLC (LU6432), (6b) ESCC (ES0199), and (6c) sqNSCLC (CTG-2558) models with TP63 amplification treated with HMBD-001 monotherapy.

Combining HMBD-001 with cetuximab results in potent and sustained anti-tumor activity in TP63-positive and EGFR-amplified squamous models

- In vivo efficacy studies of (7a) sqNSCLC (LU6432), (7b) ESCC (ES0199), and (7c) sqNSCLC (CTG-2558) models with TP63-positive and EGFR-amplified squamous models.